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ABSTRACT

Let a person express his uncertainty about an event E , conditional
upon an event F , by a number x and let him be given, as a result,
a score which depends on x and the truth or falsity of E when F
is true. It is shown that if the scores are additive for different
events and if the person chooses admissible values only, then there
exists a known transform of the values x to values which are
probabilities. In particular, it follows that values x derived
by significance tests, confidence intervals or by the rules of
fuzzy logic are inadmissible. Only probability is a sensible des-
cription of uncertainty.



SCORING RULES AND THE INEVITABILITY OF PROBABILITY

by

Dennis V. Lindley

Introduction

Suppose that a person, considering an event E about which he

is uncertain, describes that uncertainty by a number x . De Finetti's

(1974) basic argument is that if the person is scored an amount (x - 1)2

if E is true and x2 if E is false, and if the scores for different

events are additive, then x must be a probability for E . This

result has been generalized to some other scores besides the quadratic

one: a seminal paper is that by Savage (1971) which contains several

references. In the present paper we show that De Finetti's argument

applies to virtually every reasonable score function with the only modi-

fication that a known transform of x , rather than x itself, must be

a probability. The argument may be viewed as providing another axiomatic

justification for the Bayesian position, advantages being the simplicity

both of the assumptions and of the proof. It also demonstrates that any

description of uncertainty by numbers that do not obey the rules of the

probability calculus, even after transformation, will violate the simple

assumptions we make. Examples of such non-probabilistic assignments are

significance levels, confidence statements and possibilities in fuzzy

logic. The argument is extended to where the description is by means of

two numbers, perhaps upper and lower probabilities, as suggested by

Dempster (1968) and Smith (1961), to demonstrate that these are in dis-

agreement with the assumptions. The message is essentially that only

probabilistic descriptions of uncertainty are reasonable.



2

rr

I am grateful to Richard E. Barlow for inviting me to Berkeley and

to L. A. Zadeh who asked me to give a seminar on the relationship between

probability and the ideas of fuzzy logic. This seminar suggested the

possibility of the existence of a scoring rule that led to the laws of

fuzzy sets: the paper shows no such rule exists. The observations of

Robert Nau on a first draft of the paper have been of considerable value

to me.

Notation:

We consider real variables X,Y, ... taking values x,y,....

Events are denoted by E,F, ... and the same symbol is used for the

indicator variable of an event, so that E - 1 (0) if E is true (false).

fCX,E) is a function of the variables X and E f(xl) is the value

of that function when X takes the value x and E is true. f'(X,E)

is the derivative of that function with respect to X

Score Assumption:

For a given score function f(X,E) , a person who describes his

uncertainty about E , conditional on F , by a real number x will

receive a score f(x,E)F . The scores are additive in that if xi refers

to Ei conditional on F for i - 1,2, ..., n , then the total score

n
for all these descriptions will be i f(xi,Ei)Fi

i-l

We consider the question of what are reasonable values for him to

choose. A score may be thought of as a reward or as a penalty. For

definiteness we shall think of it as a penalty, so that the person wishes

to reduce his score.

I W
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Admissibility Assumption:

A person will not choose values xi for Ei conditional on Fi

(1 - 1,2, ... , n) if there exist values yly 2, ... ' Yn such that

E if(yiE i)¥i<FfiE)F i

for all values of the indicator variables, and strict inequality holds for

some values.

If the conditions do obtain, he could reduce his penalty in some cir-

cumstances without increasing it in any. In statistical language the set

(xlx 2 , ... , zn ) is inadmissible and the assumption says that only

admissible values will be selected.

Orizin and Scale Assumption:

For the uncertainty of E (E) conditional on E , there exists a

unique admissible value xT (x.) the same for all E ; and xF 0 xT .

The suffix T (F) denotes true (false). Without loss of generality

we suppose XF XT .

Reaularity Assumptions:

X can assume all values in a closed interval I of the real line.

f'(X,E) exists, is continuous in X for each E and, for both E - 1

and E - 0 , vanishes at most once. Also x, and xT  are interior

points of I

These regularity assumptions are unnecessarily restrictive and are

later relaxed. Our reason for introducing them in this form is that the

proof is then unencumbered with side-issues that might otherwise obscure

the argument. We first prove three lemmas.
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Lma 1:

All values in the closed interval [xF,xT] are admissible, and values

outside are inadmissible. The function

PWx) - f' (x.O) (2)f' (x,O) - f' (x,l)

satisfies 0 < P(x) <_ 1 in [xF,xT] , is continuous and P(xz,) = 0

P(x T ) - 1 . In particular the equation in x , P(x) = p has at least

one admissible solution for any p with 0 < p < 1

For E conditional on E the only score is f(x,l) . By the origin

and scale assumption, xT is the unique admissible value and therefore

minimizes this function. By the regularity assumption f'(xT.,l) - 0

Similarly for E conditional on E , f'(xF,O) - 0 . Again by the

regularity assumption f'(x,l) > (<) 0 for x > (<) xT and

f'(x,0) > () 0 for x > () x in particular, f'(xT,O) > 0 and

f'(X.F,l) < 0 .

For E conditional on F the score will be f(x,l) if EF - 1

and f(x,0) if (1 - E)F - 1 , and otherwise zero. If f'(x,l) and

f'(x,0) are both strictly positive (negative) x is inadmissible since

a small decrease (increase) in x will reduce both scores. Combining

this with the result in the final sentence of the last paragraph, we see

that only values in [xF,xT] are admissible. All values in [XF,XTI

are admissible since any decrease from x , although it will lower

f(x,0) , will necessarily increase f(x,l) : and similarly for an increase

from x

The properties claimed for P(x) all easily follow from the results

already established.
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Lemma 2:

The values x for E and y for E both conditional on F

being admissible imply P(x) + P(y) - 1

The total scores in the two possible cases will be:

EF - 1 f(x,l) + f(y,O)

(1 - E)F - 1 f(xO) + f(yl)

Consider small changes in x to (x + h) and y to (y + k) . The

resulting changes in these scores will be, to order h and k

f' (x,l)h + f'(y,O)k

and f'(x,O)h + f'(y,l)k

Both these changes could be made negative, so reducing both scores and

making (x,y) inadmissible, by solving the linear equations in h and

k obtained by equating these to small, selected, negative values. The

only exception to this occurs when the determinant of the linear equations

vanishes. The condition for this is that f'(x,l)f'(y,l) - f'(x,O)f'(y,O)

or P(x) + P(y) - 1

This argument fails at boundary points because the values of h

or k required to reduce both scores may not be permissible. Consider

the case x - xT where h < 0 and f'(x,l) - 0 . If y # xF , so

that f'(y,O) > 0 , the first change is f'(y,O)k and for this to be

negative, k < 0 . Since f'(x,O) > 0 , the second change can be made

negative. Hence x - x is inadmissible unless y - x1  when the first

change is necessarily positive and P(xT) + P(x) - 1 . Other boundary

values follow similarly.

I)



6

Lemma 3:

The values, x for F conditional on G , y for E conditional

on FG , and z for EF conditional on G , being admissible implies

P(z) - P(x)P(y) .

The method of proof follows that of Lemma 1. The total scores in

the three possible cases will be:

E7G - 1 f(x,l) + f(y,l) + f(z,l)

(1 - E)FG - 1 f(x,l) + f(yO) + f(z,O)

(I - F)G - 1 f(x,O) + f(zO)

Consider small changes in x , y and z ; then these can result in

changes in the three total scores that are all negative, so making

(x,y,z) inadmissible, unless the determinant of the linear equations

Is zero. Simple calculation establishes that the determinant is

[f'(x,O) -f'(x,l)j[f'(y,O) -f'(y,l)][f'(z,O) -f'(z,l)][P(x)P(y) -P(z)]

The first three factors do not vanish by results established in the proof

of Lema 1. Hence the last factor vanishes, as required. The boundary

values require special consideration as in Lemma 2; details are omitted.

Theorem:

The four assumptions listed above imply that the values x describing

uncertainty will be such that the transforms P(x) obey the laws of

probability.

Lemma 1 establishes the convexity property that 0 < P(x) < 1

and P(xv) - 0 . Le-a 2 is the additive property. Lemma 3 is the

multiplicative property.
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The theorem states that admissibility implies probability, through

a transform of the stated value, but not the converse. To consider this,

suppose that a person has probability p for E and considers that the

relevant quantity is his expected score

pf(x,l) + (1 - p)f(x,O)

He will minimize this over x with the result that p - P(x) , in accord

with the theorem. The same argument applies in the circumstances of

Lesmas 2 and 3. Minimization of expectation gives an admissible result,

so that we can state the

Corollary:

If the equation in x , P(x) - p , has a unique root for all 0 < p <. 1

then all scores such that P(x) obeys the rules of probability are ad-

missible.

If P(x) - p has a unique root, we shall refer to the scoring rule

as single-valued. If it has multiple roots we have the possibilities of

probability rules giving inadmissible values, or of admissible values not

obtained through minimization of an expectation. (Examples below show

that both possibilities can occur.) Our next result enhances tte status

of the probability transform of x

Lemna 4:

If, in considering the uncertainty of E conditional on F with

score function f(X,E)F , a person gives x ; and with score function

g(Y,E)F , gives y : then P(x) - Q(y)

Here Q(y) - g'(y,O)/(g'(y,O) - g'(y,l)} see (2), and the result

says that if the score function is changed the probability transform



is invarianc. The proof uses the method of Lemmas 2 and 3. The first-

order changes will be

EF 1 . f'(x,l)h + &'(Yl)k)

(I - E)F - 1 f'(x,O)h + g'(y,O)k

and the determinant necessarily being zero gives P(x) - Q(y)

It follows that a person could proceed by choosing his probability

p in advance of knowing what score function was to be used and then,

when it was announced, providing x satisfying P(x) - p . Robert Nau

has pointed out to me that in the proof of the theorem there is no need

for the score function to be the same for each event considered: each

value can be transformed by its own probability transform to give a

probability value. The next result shows that any probability transform

is possible.

Lemma 5:

For any function P(x) having the properties described in Lemma 1,

there exists a score function with P(x) as probability transform.

2
For example, ict f(x,O) (x - xF) , the quadratic function.

Then from (2)

f'(x,l) - 2(x - x)P(x)- 1]/P(x)

which, with the boundary condition f'(xT,l) - 0 , yields a solution

for f(x,l) satisfying the regularity conditions.

In all the discussion so far the only ordering of scores has been

based on admissibility and shows that the probability-transforms include

all admissible values. But when a person selects a value x to describe
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his uncertainty he is using more than admissibility: he is selecting one

value out of all admissible ones. In particular, in the case of multiple

roots, he is selecting amongst x-values that yield the same probability.

Our next assumptions concerns this additional ordering.

Invariance Assumption:

Any preferences amongst scores do not depend on the score function

being used, and suct' preferences are transitive.

Theorem 2:

The five assumptions listed above imply that the values x describ-

ing uncertainty will be such that the transforms Px) obey the laws of

probability and conversely that any x may be attained by selecting

probabilities and minimizing the expected score.

Only the second part requires proof (the first is Thec em 1) and we

use the figure. Here the axes are the scores f(x,l) and f(xO) and

the solid curve describes these coordinates as x varies from x. (at F)

to xT  (at T) . (It is actually the curve of a quartic rule to be

described below, but will serve for the proof.) This curve will have

slope f'(x,O)/f'(x,l) - -P(x)/l - P(x)} , always negative and varying

continuously from zero at F to - at T . By the remark above, any

curve will these properties can be obtained from suitable f's . The

points A and B are both admissible and have the same transforms

P(x)--the tangents at A and B have the same slope. The dotted curve

corresponds to another score function which is single-valued and passes

through A with the same slope. On this curve there clearly exists a

point C with both scores less than those of B
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Now consider an event with probability p . With the single-valued

score function, A is preferred to C . By admissibility C is pre-

ferred to B . Hence, by the invariance assumption, A is preferred

to B with the original score function. This argument is available

for any point, like A , that minimizes the expected score, and the

theorem is established.

The results obtained apply only to score functions which obey both

the origin and scale, and regularity assumptions. The former is not

essential. One can have score functions with several minima and, in

particular, several possible descriptions of a sure event. This leads

to ambiguities which can be resolved in the sense that they all lead to

the same probability, namely one, after transformation. No advantage

seems to accrue from such flexibility.

The regularity assumptions require considerable discussion. The

existence and continuity of the derivatives is introduced in order to

avoid abrupt changes in the score. The nonvanishing of the derivatives,

except at %F and xT , is a slight strengthening of the natural require-

ment that, at least for admissible values, the score function does not

take the same value for two different choices xI and x2 ; for if it

did, there would be no rationale for choosing between x and x2 and

again there would be ambiguity. The unnecessarily severe restriction is

that xy and xT are interior points, introduced to ensure that the

minima are obtained by the differential calculus, a condition that need

not obtain on boundary points. We consider the case where x. is a

boundary point: an analogous treatment applies at T .

The major difference now is that we do not necessarily have

f?(xFO) - 0 . Suppose that we add the condition that lim f'(x,0)/

f'(x,l) - 0 and require that f'(x,0) > 0 for x > x. . The effect
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of the limit condition is to make lim P(x) - 0 It is then straight-

forward to show that the properties of P(x) proved in Lemma 1 still

obtain, as do the boundary features considered in Leams 2 and 3. The

curve of admissible values used in the proof of Theorem 2 will still have

zero slope at xF and the argument used there carries over. Consequently

both theorems remain true.

We therefore restate the

Re ularity Assumptions:

X can assume all values in a closed interval I of the real line.

f'(X,E) exists and is continuous in X for each E . For x > (<) xF

f'(x,O) > (<) 0 : for x > (<) xT , f'(x,) > (<) 0. Then either

is an interior point of I o-" lim f'(x,O)/f'(x,l) - 0 . Also

either xT  is interior or lim f'(x,l)/f'(x,O) - 0

X~-XT

Under these conditions Theorem 1 and 2 persist.

We now offer several miscellaneous comments on the results.

1. Throughout the discussion we have referred to uncertainty of E

conditional on F because conditional assessment is the general form.

If the person knows that F is true then we may speak of the uncertainty

of E . It should be remembered that the full force of the phrase

"conditional on F" is "were the person to be told that F is true".

He is assessing the situation now and scores are only nonzero, and there-

fore, of concern to him, when F - 1 . Re need only consider the case

F I but does not need to know that F- 1.
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2. A scoring rule is proper if it leads directly to a probability:

that is, if P(x) - x or

xf'(x.l) - (1 - z)f'(xO)

The quadratic rule used by Do Finetti has f(x,l) - (x - 1)2 and

f(x,O) - x2 and is clearly proper. As an example of an improper rule

4 4consider f(x,l) w (x - i) and f(x,O) - x , in which the fourth

powers replace the squares of the proper rule. P(x) Is then

x 3/(3x 2 - 3x + 1) and P(x) - p is a cubic in x with a unique root

x for any 0 < p< 1 .

The quartic rule, suggested to me by Robert Nau,

f(xE) L X4 _-3x2 +(1 L E x16 81 ( 2

provides an example for which P(x) - p has multiple roots or is not

single-valued. Here x. - -2 , xT - +2 , the regularity conditions are

obeyed with these as interior points and

P(x) - (x + 2)(x - 1)2/4

a cubic with three roots in x for every p , 0 < p <1 . It is the

scores for a single event with this rule that are graphed in the figure.

As x decreases from xT - 2 the scores move from T along the curve

to the point a when % - /3 . These points lie on a convex part of

the curve and can be obtained by minimizing the expected score. As x

decreases further the curve remains convex until at x - 1 it reaches

the point b ; but these points, though admissible, cannot be obtained

by a minimization of the expected score and are dominated by points near
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F (x near x7) having the saw tangent slope. Between x - 1 and

x 0 , vhen the curve reaches the origin, the curve is concave but the

values are still admissible though again dominated by values near 3F "

The situation repeats itself between the origin and F vith -x for x

and T for F . Only values 3 <.x2 < 4 are satisfactory and can be

obtained by minimizing the expected score. Between -2 and -/3 ,

P(x) increases monotonically from 0 to 1/2 : between 4/3 and V2

it similarly passes from 1/2 to 1 . The stated value has a discon-

tinuity as p passes through 1/2 . It is generally true that the
2

condition for curvexity is P' (x) > 0 : this obtains here with 1 <. x 2< 4

The remaining values Jxj . 1 , give points on the concave part of the

curve.

If the scores are plotted for E and 1 (cf. Lames 2) then the

curve P(x) + P(y) - 1 again gives the three types of points Just

considered-minimizing an expected score, convex but not obtained by

minimization, concave--but also points which are inadmissible. These

latter arise when lxi . 1 and y - -x .

3. The regularity assumptions are all obviously reasonable except

those on the limits at xT  and x. when they are not interior points.

Consider what happens when they do not hold, specifically suppose

hin f'(x,0)/f'(x,l) < 0 , or him P(x) - a > 0 . This implies

x must be chosen so that P(x) > a or is zero. But Lems 3 shows that

this implies P(x) > aL , and so on. Rence all values of x must be

such that P(x) is 0 or 1: that is, the only admissible values are

x - x. and x - xT . Such score functions are trivial in that they

always lead to asserting the truth or falsity of any event, a practice

7.77
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which is encouraged in present-day teaching by the requirement that the

pupil is always expected to answer from a dichotomy "yes"or "no":

"right" or "wrong".

A strange scoring rule illustrating this is the square-root rule

with f(x,1) - (1 - x)4 and f(x,O) - x for 0 < x < 1 . Here x. - 0

xT - 1 . Since f2(xl) + f2 (x,0) - 1 the curve of admissible values

is the quarter of the unit circle in the positive quadrant centered at

the origin, which is entirely concave. The only points that can be reached

by minimizing an expected score are x. and xT . The regularity con-

ditions are not satisfied: indeed lim f'(x,0)/f'(xl) is infinite and

P(x) decreases with x

4. We now turn to scoring rules that are more useful. The logarithmic

form,

f(x,l) - -log x and f(x,0) - -log (I - x)

is defined only in [0,1] . It is proper with P(x) - x . The hyperbolic

form

f(x,l) " x- 1 and f(x,O) - (1 - x) - 1

is also only defined in (0,11 . It has

P(x) - x2 /x 2 + (1 - x) 2

and is not proper, although P(x) - p has a unique root in x for each

0 < p .1 and is single-valued.

As an example of rule with infinite range consider the exponential

rule with

L 9 "
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f(xl) - e and f(xO) - x

Here i- x , 4T  and 1(x) - l/(1 + •-x) ranging from 0 to 1.

This Is improper but nevertheless a possibly useful rule in that it

encourages the person to select x corresponding to a probability where

p - 11(1 + •-x) and hence x - log {p/(1 - p)} . In other words, the

values announced are log-odds.

The rules with

f(x,l) - 1 - F1(x) and f(x,O) F0 x)

where FiC) are distribution functions on (-,) are interesting

because they are bounded both above and below and are defined on [ai]

if f1 x) and f0 (x) are the corresponding densities,

P(x) - fo(x)/(fo(X) + fl(x)) . Often these do not provide acceptable

rules since the range of P(x) is not the full unit interval. An

extrem case arises with f0 (x) - fIx) when P(x) - I for all x

and only _±- are admissible: see comment (12) below. If f 1x)

corresponds to N(1,4) and f0 (x) to N(-1,4) , then P(x) - 1/(1 + •-x)

and we are back to a log-odds rule.

5. The notion of admissibility is essentially that of Pareto optimality.

One way of expressing the result of this paper is to say that a person who

accepts Pareto optimality and the invariance assumption, and who then, by

some unstated process, selects a unique value from the Pareto set, is

effectively introducing probabilities and miniaizing an expected value.

In situations where the single-valued condition does not obtain, many

of the values in the Pareto set are ruled out. (Nau's quartic rule illus-

trates this.)

~-j.
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6. The considerations of this paper have considerable practical

import besides the justification of the Bayesian argument.

Consider a geologist who, after a survey, is asked to express his

uncertainty about E , the existence of oil at a site, conditional on

the result F of the survey. Than he may well see the position in terms of

implicit score functions reflecting the dangers of giving a high value,

so encouraging drilling, when the area is dry; and the lesser dangers of

giving a low value when subsequent drilling reveals oil. It would not be

unreasonable to expect that the implicit score function was improper and

that he will therefore be motivated to give x rather than his probability

p . This suggests that in many cases attention should be paid to the

score function so that the stated value may be transformed onto the prob-

ability scale. If the geologist provides several assessments then informa-

tion about the transform, and hence about the scores, can be found from

the known probability structure of the transformed value.

It may, of course, happen that the implicit score function just

referred to does not obey the regularity conditions. In which case the

geologist will be led to make emphatic statements about the existence of

oil, as was mentioned in conment 4.

7. We now consider ways of assigning numbers to uncertain events

that have been suggested in the literature to see if they lead to admissible

values when judged by any scoring rule. For a real parameter e , the

method of (one-sided) confidence intervals enables a number to be attached

to the event E , that 8 < a , conditional on F , the data: this is

the confidence that e < a and we write cf(O < a data) Suppose

cf(O < -1 data) a a
(3)

cf(e < +1 data) -
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and

cf(8 < -l 1 data,O < +1) - (4)

Then, if the confidence method is admissible, we must be able to find P(-)

such that P(m) - P(O)P(y) : this follows from Lema 3. But since the

confidence statement (3) is derived from a probability statement valid

for all 8 , the restriction to 8 < +1 in (4) makes no difference to

the validity of the statement and hence y - a . Consequently

P(a) - P(0)P(a) and either P(O) - 1 or P(a) - 0 . Hence there is

no transform of a confidence statement to a probability statement and

the confidence values are inadmissible.

8. Another way of assigning numbers is through significance tests.

Let data x have an exponential distribution with density Se

x > 0 , > > 0 To test the hypothesis that 8 - w , against the alter-

native 8 0 w , when x is unexpectedly large on hypothesis w , the

"tail" of the null distribution is used:

P(X > XIW) f weW ~dt - e

and

sg(w I x) - e

is the significance attached to the event E that 8 = w , given F

the data. If x is small, the other tail is used and sg(w I x) - I - •wx

Hence for all x

sg(W I x) - min {eWx , 1 - e' x }
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For this to correspond to a scoring rule, there must exist a transform

P(') of these values to nonnegative values with the integral over all

w equal to unity: this is the addition rule of probability. But the

significance value depends only on wx , so fP(wx)dw - 1 . Let wx - u

then fP(u)du - x-l for all x , which is impossible. Hence significance

statements are inadmissible.

9. The discussion in (7) and (8) of confidence and significance state-

ments is based on my personal understanding of these methods. That under-

standing may be defective because the methods are not unambiguously

described. For example, in (7), is the result that led to y - a correct?

Is a confidence statement altered if the parametric range is restricted?

The discussion of significance levels in (8) is similarly bedevilled by

the ambiguity over whether one-or two-sided tests are appropriate: we

have used only the one-sided form. It is my conviction that both these

methods are inadmissible because they violate the likelihood principle,

that easily follows from the probabilistic description of uncertainty.

10. Another way of assigning numbers to uncertain events has been

suggested by Zadeh (1979). These numbers are called possibilities. Let

all statements be conditional on the same event not described in the

aotation. Then the possibilities R(E) for events E satisfy the rule

of combination

fl(E U F) - max (It(E),11(F)}

This is in conflict with the corresponding probability rule

p(E U F) - p(E) + p(F) - p(E , F)



20

which is a linear operator on the statement for indicator variables

1 - (1 - E)(l - F) - E + F - EF

The possibility relation being nonlinear cannot be transformed and hence

possibilities are inadmissible.

11. An extension of the idea of using a single number to describe

the uncertainty of E conditional on F is to use two values, xI , x2

They are sometimes called upper and lower probabilities. To score these,

one might use a function f(xl,x 2,E)F . Consider applying the admissibility

ideas here. (We omit the details which parallel those given above.)

With (xlx 2) stated for E conditional on F , the scores are

EF - 1 f(xlx 2'l)

(I - E)F - 1 f(xl,x2,0)

As before consider small changes 6x I ,ax in the values. Then the

score changes will be

f1 (Xl'x29)Sx 1+ f2(xl'x2,l)6x 2

and f1(xl,X2,0)6x1 + f2(xlx 2,0)5x2

where f denotes the derivative with respect to the ith argument.

For admissibility the determinant must vanish. This determinant is equal

to the Jacobian of the transformation from (x1 ,x2) to (f,g) . If it

vanishes everywhere, the functions f and g assume constant values

on the same curve in the (xlx 2 )-plane, so that there is no reason to

choose between different values on the curve and the subject is effectively

I;
[ --- -- .
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only using one number (that describes which curve), rather than two, to

measure his uncertainty.

If the Jacobian does not vanish everywhere then the values of (x1,X2)

are confined to the curve where it does vanish, namely where

f 1(XlX2,I)  f 1(%lox 2,0)

f2(x1,x2,l) f2(XVx2,0)

Call this common value h(xx 2) Then again, in effect, the subject

is only providing a single number describing his position on that curve.

For example, suppose (xox,2) is given for E , and (y1,y2) for E ,

both conditional on F . This is the situation comparable to that in

Lemma 2 and the total scores are

EF - 1 f(xlx 2,l) + f(YIPY 2,0)

and (I - E)? - 1 f(xlx 2,0) + f(yly 2 ,1) •

The changes in scores, resulting from changes (6xl,6x2) in (XlX 2)

and (dyldy2) in (y ,Y2) , will be on utilizing (5),

f 2 (xlx2,1)[h(xx2)6X 1+ 6x2] + f2 (yly'2,0)[h(ylY 2 )SY1 + &y2]

f2(xl,x2 ,0)[h(xl,x2)6xI + Sx2] + f2 (ylY 2 ,l)[h(ylY 2)Sy1 + Sy21
]

The vanishing of the determinant gives

f 2(xltx2,1)f 2(YISY201) 2 2(%lox 2P0)f2(YlY2, 0),

or if

f2(xl"x2 ,0)

P(XlX 2) - f2(xlx 2,O) - f2(Xlx2,1)
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that P(xlx 2) + P(yly 2) - 1 and we are back to the addition rule for

probabilities. The product rule follows similarly.

This does not close the book on the idea of using two or more numbers

to describe uncertainty, for it might be reasonable to use two or more

score functions, measuring different qualities of the descriptions in the

manner of a multiattribute utility function.

12. The argument of SAafer (1976) is affected by the scoring-rule

criterion. He suggests, in the situation of Lemma 2, that any values,

x for E , y for E , could be used subject only to the requirements

that x > 0 , y 10 x + y < 1 . Such numbers are possible values for

a belief function. But Lemma 2 shows that P(x) + P(y) - 1 and hence

the only scoring rule to make all Shafer's values admissible has

P(x) - , or f(x,O) + f(x,l) = constant. But this contradicts the

product rule in Lemma 3. Alternatively P(x) - means that f'(x,O)

-f'(x,l) and hence lim f'(x,O)/f'(x,l) - -1 in contradiction of the

regularity condition.

13. Notice that in the score assumption we have supposed that n

the number of events judged, is finite. The infinite case causes

difficulties due to the possible divergence of the series describing the

total scores. As a result we have only established the addition rule

for a finite number of events and the resulting probability is only

finitely-additive and not a-additive. We have been unable to see how,

or even if it is possible, to extend the notion of a score to an enumerable

infinity of statements.
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